
TECHNICAL ADVANCE

Meta-analysis and meta-regression of transcriptomic
responses to water stress in Arabidopsis

Joshua S. Rest1,*, Olivia Wilkins2, Wei Yuan2, Michael D. Purugganan2 and Jessica Gurevitch1,*
1Department of Ecology and Evolution, 650 Life Sciences, Stony Brook University, Stony Brook, NY 11794–5245, USA, and
2Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003, USA

Received 1 December 2014; revised 4 January 2016; accepted 8 January 2016; published online 12 January 2016.

*For correspondence (e-mails Joshua.Rest@stonybrook.edu or Jessica.Gurevitch@stonybrook.edu).

SUMMARY

The large amounts of transcriptome data available for Arabidopsis thaliana make a compelling case for the

need to generalize results across studies and extract the most robust and meaningful information possible

from them. The results of various studies seeking to identify water stress-responsive genes only partially

overlap. The aim of this work was to combine transcriptomic studies in a systematic way that identifies

commonalities in response, taking into account variation among studies due to batch effects as well as

sampling variation, while also identifying the effect of study-specific variables, such as the method of apply-

ing water stress, and the part of the plant the mRNA was extracted from. We used meta-analysis, the quan-

titative synthesis of independent research results, to summarize expression responses to water stress

across studies, and meta-regression to model the contribution of covariates that may affect gene expres-

sion. We found that some genes with small but consistent differential responses become evident only when

results are synthesized across experiments, and are missed in individual studies. We also identified genes

with expression responses that are attributable to use of different plant parts and alternative methods for

inducing water stress. Our results indicate that meta-analysis and meta-regression provide a powerful

approach for identifying a robust gene set that is less sensitive to idiosyncratic results and for quantifying

study characteristics that result in contrasting gene expression responses across studies. Combining meta-

analysis with individual analyses may contribute to a richer understanding of the biology of water stress

responses, and may prove valuable in other gene expression studies.

Keywords: Arabidopsis thaliana, drought response, water stress, meta-analysis, research synthesis, gene

expression microarray, transcriptomics.

INTRODUCTION

Differentially expressed genes (DEGs) are important indica-

tors of plant physiological responses to different environ-

ments. Transcriptome-wide studies enable comprehensive

enumeration of DEGs and their magnitude of change

between paired treatments. While much of the current

focus is on RNA-seq data, a great amount of data obtained

using microarray methodology exists, addressing many

important types of plant response. The large amounts of

transcriptome data available for the model plant species

Arabidopsis thaliana make a compelling case for the need

to generalize results across studies to extract the most

robust and meaningful information possible from this

large body of information. Since 2003, more than 800 data

sets generated using Affymetrix ATH1 whole-genome

microarrays have been deposited in the Gene Expression

Omnibus. These data sets have examined gene expression

in response to various environmental factors, including

insect herbivory, heat stress, water stress and pathogens,

as well as gain-of-function and loss-of-function mutations

and developmental processes. Gene expression results

have rarely been quantitatively synthesized across studies

for Arabidopsis or for any other plant species (Postnikova

and Nemchinov, 2012; Rodrigo et al., 2012; but see Shaik

and Ramakrishna, 2013). Plant microarray studies are

sometimes compared by listing DEGs identified by differ-

ent studies and counting the number of genes identified in
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common; the results of these comparisons are often pre-

sented using Venn diagrams to show overlaps in DEGs dis-

covered by various studies. Other studies have analyzed all

arrays simultaneously using t tests or ANOVA, or have trans-

formed expression values into ranks (Yu et al., 2011; Bhar-

gava et al., 2013; Lai and Ge, 2014). These approaches

have in common a key limitation: they are not able to

account for the variance in responses across biological

replicates in an accurate and unbiased manner. In addition,

they do not account for difference in the precision with

which responses are measured across studies (i.e. the

inverse of the study sampling variance; studies with two

biological replicates are counted as heavily as those with

20 biological replicates, although the confidence intervals

of the latter study would be much smaller). Sampling vari-

ance is a statistical concept that estimates the amount of

random variation in outcomes that would be expected if

one repeated the same experiment in the same way multi-

ple times. It is estimated from the number of biological

replicates and the variation among them in a given study,

and has a larger value when the number of replicates is

small. Additional sources of variation in gene expression

among studies include batch effects due to unknown fac-

tors (Kang et al., 2011), as well as known biological and

methodological differences that have been measured and

reported, such as differences in plant treatment and study

methodology. Modern methods for meta-analysis and

meta-regression can account for these different sources of

variance statistically, thereby reducing bias due to study-

specific factors and small sample sizes. By contrast, some

of the conventional approaches used to synthesize study

results suffer from statistical biases that may even become

more pronounced with increased amounts of data (Gure-

vitch and Hedges, 1999; Koricheva and Gurevitch, 2014).

Due to these and other limitations, results may seem

inconsistent, contradictory or heterogeneous across stud-

ies, even when they actually are consistent.

The statistically rigorous methods of meta-analysis and

meta-regression address the limitations of older

approaches to cross-study comparisons, and are used by

scientists in many fields who are interested in quantitative

research synthesis. In a formal meta-analysis, the out-

comes of various studies addressing the same question in

comparable ways are expressed on the same scale, using

a metric known as ‘effect size’. For example, the effect size

may be a differential response to an experimental treat-

ment, expressed as the ratio of the mean response to an

experimental treatment to the mean response in a control.

The outcomes of each study, expressed in terms of the

effect sizes, are then combined. However, rather than tak-

ing the simple mean, the studies are combined by weight-

ing more precise estimates of the studies’ effect sizes more

heavily than those of smaller and more variable studies. In

doing so, variation both within and among studies is

accounted for. Because each study is weighted inversely to

its variance, this is called inverse-variance weighted meta-

analysis. Statistical models may then be used to account

for true random variation among study outcomes, and for

hypothesized sources of variation using meta-regression

(described below).

Here, we use inverse-variance weighted meta-analysis to

synthesize the results of differential gene expression stud-

ies on the responses of Arabidopsis to water stress, based

on extending conventional meta-analysis approaches to

transcriptomic data. The effect sizes are based on differen-

tial gene expression. While differential gene expression is

typically expressed as log2 fold change, according to the

convention in meta-analysis (Hedges et al., 1999), we use

the closely related effect size metric called the log expres-

sion ratio (lnR). This is the natural log of the ratio of the

mean expression level of a gene (i.e. probe set) in an

experimental group to the mean expression level of the

gene in a control group.

Meta-analysis approaches have recently begun to be

applied to gene expression studies in medical and

other research fields, and have been shown to reduce

inconsistencies, account for sampling variation, and detect

candidate genes that are differentially expressed consis-

tently across studies (Stevens and Doerge, 2005; Hong and

Breitling, 2008; Kang et al., 2011; Tseng et al., 2012).

Instead of weighting based on variance, earlier approaches

to synthesize gene expression studies included rank-based

tests and combining P values (Hong and Breitling, 2008),

and several R packages are based on these methods (e.g.

Hong et al., 2006). While there are few such studies in

plants, one that we are aware of combined differential

gene expression results to drought and bacterial stress in

Arabidopsis and rice using both a rank-based non-para-

metric as well as a co-expression approach (Shaik and

Ramakrishna, 2013). A study by Zaag et al. (2015) used a

model-based clustering approach to find and visualize co-

expressed genes involved in the response of Arabidopsis

to stress; this approach was applied to each of 18 stress

categories. However, these approaches are limited because

they do not account for differential variance among experi-

ments, nor do they model methodological and biological

covariates within or across stress categories. While each of

these approaches has strengths, inverse-variance weighted

meta-analysis has been shown to be an especially robust,

comprehensive and consistent method of meta-analysis

for gene expression data (Ramasamy et al., 2008). Here-

after, when we discuss meta-analysis, we are referring

specifically to inverse-variance weighted meta-analysis, as

used in our study. One of the first papers to introduce this

approach to gene expression was a synthesis of cancer

profiling studies (Choi et al., 2003). To our knowledge, this

approach has not previously been applied to gene expres-

sion studies in plants. As discussed above, the advantage
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of using this approach is that, in addition to determining

the overall response for each gene across studies, we can

ensure that the effect is consistent across studies beyond

random sampling variation, because it distinguishes sam-

pling variation within studies (i.e. chance differences in the

outcome that would occur if the same study was repeated

in exactly the same way many times) from true hetero-

geneity among studies.

An extension of meta-analysis, called meta-regression,

may be used to model the effects of hypothesized factors

that may account for variation in responses across studies

(Nakagawa and Santos, 2012; Mengersen and Schmid,

2013). In a meta-regression, variation due to study charac-

teristics (called moderators or covariates) may be modeled

statistically, thereby accounting for heterogeneity in study

outcomes (in addition to the random and sampling varia-

tion, described above, including batch effects, described

below). Such covariates may be categorical or continuous

factors that are biologically meaningful, such as the strain

used or the temperature at which an experiment was per-

formed, or methodological, such as the duration of the

experiments. Meta-regression may identify statistically sig-

nificant covariates (i.e. factors that may explain meaningful

heterogeneity among studies) and estimate their magni-

tude and sign (i.e. negative or positive effects on the study

outcomes). Meta-regression has been applied to date lar-

gely in medical research synthesis, and, to our knowledge,

has not yet been applied to gene expression data. It offers

a statistically powerful method for identifying factors that

may alter responses. Meta-regression was first introduced

to research synthesis in medicine in the early to mid-1990s

(Schmid et al., 1994; Holme, 1996) with the primary goal of

adjusting estimates of main effects, but its use has more

recently been expanded, particularly in fields where under-

standing the contributions of covariates is of primary inter-

est scientifically. In addition to using meta-analysis to

synthesize transcriptomic studies on water stress in Ara-

bidopsis, we performed meta-regression on transcriptomic

data to draw inferences about specific responses attributa-

ble to biological and methodological characteristics of vari-

ous studies.

The approaches described here may be adapted for any

differential gene expression data, including both microar-

ray and RNA-seq data. The large amount of available

microarray data, and the statistical benefits offered by

meta-analysis and meta-regression, create a compelling

argument for applying meta-analysis to synthesize plant

microarray studies. Importantly, meta-analysis has the

potential to identify not only DEGs with large differential

responses (when these responses are consistent across

studies), but also to discover DEGs with relatively small

responses that are highly consistent within and across stud-

ies (Choi et al., 2003). On the other hand, genes with large

but variable and inconsistent differential responses may be

rejected as DEGs. The development of meta-analysis and

meta-regression methodology holds promise for de-convo-

luting effects specific to individual transcriptomic studies

from more general, biologically important phenomena.

Identifying sources of heterogeneity among studies may be

highly informative in the biological interpretation of gene

expression responses.

Compared to typical meta-analysis data, microarray data

have a very unusual and distinctive statistical structure,

with very few replicates within studies and very large num-

bers of outcomes (gene expression values). All genome-

wide expression studies present the need to adjust for

such large numbers of statistical tests on the same data

set, requiring methods to account for false discoveries

when performing thousands of statistical tests on the thou-

sands of expressed genes (Ramasamy et al., 2008; Tseng

et al., 2012). In single-study genomic analyses, this has

been addressed by using false discovery rate (FDR) analy-

ses to adjust the results of multiple t tests and ANOVAs.

Meta-analyses of these data face the same issues, exacer-

bated by having multiple studies. Meta-analysis outcomes

must therefore also be corrected using the FDR to correct

for multiple-testing errors.

Statistical analysis of microarray studies also requires

substantial technical quality control and normalization

among replicates prior to research synthesis. After quality

control and normalization, effect sizes are calculated, and

statistical models are used to synthesize and analyze the

responses across studies. As in any meta-analysis on data

in any field, various aspects of the studies will result in dif-

ferences in the outcomes (i.e. the effect sizes): both those

that are of scientific interest and those that must be

accounted for but are not in themselves of interest. Early

meta-analyses used fixed-effects statistical models, which

assume that the outcomes of different studies differ only

from one another in terms of sampling error, i.e. if all of

the studies were ‘sufficiently’ large in size, the outcomes

would be identical (e.g. Mengersen et al., 2013). However,

it was recognized that many real (but unmeasured and

uncharacterized) differences that result in differences in the

outcomes may also exist among studies. To account for

this, random-effects models were developed (Mengersen

et al., 2013). In transcriptomic data, for example, one such

cause of variation among outcomes is batch effects. Batch

effects are expression differences between samples as a

result of unintentional experimental or technical hetero-

geneity in sample processing (e.g. between days, laborato-

ries or platforms), and are known to affect both microarray

approaches (Lander, 1999) and next-generation sequencing

approaches (Auer and Doerge, 2010). In some cases, the

sources of such heterogeneity are in themselves of inter-

est, and, if the data are available, they may be formally

tested (as covariates in a meta-regression model). How-

ever, in many cases, these sources of heterogeneity are
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not in themselves of particular interest, nor are the data

available to test them formally; consequently they may be

modeled and accounted for in the random error compo-

nent of a meta-analysis or meta-regression model. We

therefore treat the unknown sources of variation responsi-

ble for batch effects as a component of the random error

variation among studies in our analyses, although other

statistical approaches have also been suggested to account

for batch effects (e.g. Johnson et al., 2007; Chen et al.,

2011).

One advantage of the distinctive structure of microarray

data is that, unlike other kinds of data (i.e. different medical

studies performed on different groups of patients, mea-

sured using different instruments), the measurement

methodology (i.e. the Affymetrix platform) is uniform,

greatly reducing variation among studies. When based on

a single platform (such as Affymetrix), the data have essen-

tially identical measures (i.e. identical probes) across stud-

ies. This is very different from typical meta-analysis data

where measurements of outcome may differ considerably

among studies.

The goal of the present study was to synthesize the

results of differential expression microarray experiments in

which Arabidopsis plants (Col–0 accession) were exposed

to water stress. We used meta-analysis and meta-regres-

sion to identify patterns of gene expression across studies,

and to determine which genes were expressed differently

in response to several hypothesized biological and

methodological covariates. In particular, we were inter-

ested in differences in responses in roots versus shoots

(leaves and rosettes) and in response to different methods

of inducing water stress. A separate meta-analysis was

performed for each gene, and the results were adjusted for

the FDR. We then compare the results of the meta-analysis

to results obtained using the more standard approach of

applying tests for differential expression to each individual

study.

RESULTS

Meta-analysis reveals consistent responses to water stress

across studies

We performed a meta-analysis of ten studies of gene

expression responses to water stress in Arabidopsis (see

Table 1) for each of 11 984 probe sets (hereafter referred to

as genes) using a random-effects model, and then cor-

rected for multiple testing. Our meta-analysis of these ten

studies identified 4015 genes showing significant differen-

tial expression in response to water limitation compared to

control conditions in Arabidopsis thaliana (FDR < 0.05; Fig-

ure S1a and Table S1). We constructed two novel versions

of conventional meta-analysis forest plots (e.g. Borenstein

et al., 2011) designed to illustrate the responses for all of

the DEG results (Figure 1a,b). In these figures, the results

of the meta-analysis for the responses of each of the

11 984 genes is represented by a single line with a symbol

indicating the weighted mean effect size across studies (l̂;
i.e. the mean response for that gene across studies) and

the 95% confidence interval (CI) around that mean. The

two figures highlight different aspects of the overall

response as well as specific responses. Figure 1(a) was

designed to show the magnitude of the response for each

gene as well as how far the CI for each of the 11 984 genes

was from zero. A large value for l̂ indicates a large mean

response for the gene. If the CI overlaps zero, this indicates

that there is no significant response for that gene, but if

the CI is far from zero, it indicates confidence that the gene

response was significant. To construct Figure 1(a), we

sorted genes by the magnitude of the size of the gap

between the edge of the CI for each gene and zero, for

those responses that did not overlap zero. Those genes

with CIs that overlapped zero were sorted below the first

group of genes, by the magnitude of l̂ (Figure 1a). In Fig-

ure 1(b), we re-visualized the same results by sorting all

gene responses by the magnitude of l̂ for each of the

genes (without consideration of the magnitude or value of

the CI). The results for genes with values of l̂ that are sig-

nificantly different from zero in Figure 1(a,b) are colored

either red (up-regulated) or blue (down-regulated); values

of l̂ that are not significantly different from zero are col-

ored gray. An examination of Figure 1(a,b) shows that the

ability to detect significant effects depends both on the

magnitude of the CI (reflecting the repeatability of the find-

ings across experiments) as well as the magnitude of l̂.
Thus, genes with large differential responses may not be

significantly different from zero, if their CIs are very large,

while genes with small but highly consistent effects across

studies may be discovered because their tight CIs identify

responses that are significantly different from zero (Choi

et al., 2003). These genes are not as easily recognized by

most conventional methods (e.g. t tests or ANOVAs of indi-

vidual studies). We compare the likely number of such dis-

coveries of small but consistent differential responses

below by comparing the meta-analysis results to results

from individual studies, and discuss some specific exam-

ples of genes with this outcome.

Meta-regression reveals plant part- and method-specific

responses

We examined plant part-specific responses to water stress

by meta-regression, using a random-effects model with

plant part included as a covariate in the model for each of

the 11 984 genes. Specifically, after correction for multiple

testing, we identified genes that had a significant non-zero

response to water stress in shoots or in roots, to determine

genes for which these effects in shoots and roots are sig-

nificantly different from each other. Using a random-effects

meta-regression model with plant part as a covariate, we
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found 286 genes that are up-regulated in one plant part

and down-regulated in another (FDR < 0.05; Figure 2, Fig-

ure S1b and Table S2). We also identified genes that are

up-regulated to different extents in response to water

stress in shoots and roots, including three genes that are

significantly more up-regulated in shoots than in roots,

and 22 genes that are significantly more up-regulated in

roots than in shoots. We also identified genes that are

down-regulated to different extents in response to water

stress in shoots and roots, including four genes that are

significantly more down-regulated in shoots than in roots,

and 87 genes that are significantly more down-regulated in

roots than in shoots.

Using the same approach, we performed a meta-regres-

sion to examine the influence of the particular experimen-

tal method used to impose water stress (deracination,

mannitol or water withholding) as a covariate in a

random-effects meta-regression model. The meta-regres-

sion identified 1052 genes for which the influence of

the type of water stress treatment on the mean effect

size (ldecracination;lmannitol;lwater�withholding) was statistically

significant (FDR < 0.05; Figure S1c and Table S3). Of these,

a majority (736) have a larger expression change in

response to deracination than to the other treatments (Fig-

ure S2a); it is likely that some of these reflect responses to

wounding or other stresses rather than to water stress

0
40

00
80

00
12

 0
00

G
en

es
 o

rd
er

ed
 b

y 
di

st
an

ce
 o

f C
I f

ro
m

 z
er

o

−1 −0.5 0 0.5 1 1.5

Weighted mean log expression ratio

0
40

00
80

00
12

 0
00

G
en

es
 o

rd
er

ed
 b

y 
di

st
an

ce
 o

f m
ea

n 
fr

om
 z

er
o

−1 −0.5 0 0.5 1 1.5

Weighted mean log expression ratio

(a) (b)

Figure 1. Meta-analysis of the weighted mean of log expression ratios (i.e. weighted mean effect size, l̂) of gene expression responses across water stress

experiments, sorted by distance of the 95% confidence interval from zero (a), or distance of the weighted mean expression ratio from zero (b). Genes with

confidence intervals that overlap zero in (a) are also sorted by the distance of the mean from zero.

Each gene is indicated by a dot (l̂) and a horizontal line (95% CI). Genes with significantly (FDR < 0.05) positive values of l̂ (up-regulated) are colored red; genes

with significantly negative values of l̂ (down-regulated) are colored blue, and genes with values of l̂ that are not significantly different from zero are colored

gray. For genes with 95% CIs that overlap zero in (a), and for all genes in (b), the dots for l̂ tend to merge into lines.

Table 1 Data sets used in meta-analysis and number of differentially expressed genes (DEGs), according to individual t test contrasts and
the intersection of each contrast and the meta-analysis

Contrast
GEO
accession

Plant
part Treatment

Number
of arrays

DEGs by
t test contrasts

Intersection of DEGs
by t tests and meta-analysis

A GSE40061 Root Water withholding 6 7988 2660
B GSE40061 Leaf Water withholding 6 3339 1436
C GSE36789 Root Mannitol 6 3627 1301
D GSE36789 Leaf Mannitol 6 2159 1139
E GSE35258 Seedling Polyethylene glycol 6 4257 2133
F GSE19700 Rosette Water withholding 6 0 0
G GSE15577 Rosette Water withholding 4 5068 2705
H GSE10670 Leaf Water withholding 6 3518 1912
I GSE10643 Rosette Water withholding 4 0 0
J GSE6583 Rosette Deracination 6 5080 2445
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alone. The remaining 316 genes with a significant treat-

ment effect respond more strongly to mannitol or water

withholding than deracination; these appear to generally

have opposing responses between mannitol and water

withholding treatments (Figure S2e,f,h,i).

Comparison of meta-analysis with individual t test

contrasts

We next sought to determine the extent that the 4015

genes identified by the meta-analysis are concordant or

complementary with results obtained by a simple sum-

mary of t test results from individual studies (Table 1;

hereafter, the t test results for all of the genes in each

individual study are referred to as a contrast). For each

contrast, we performed moderated t test analyses (Smyth,

2004) of water stress-treated plants versus control plants

for each gene in each individual study, resulting in a list of

DEGs (FDR < 0.05; Table 1). While there were 4015 DEGs

identified by the meta-analysis, a highly variable number

of water stress-responsive genes were identified in each

contrast: ranging from zero to almost eight thousand DEGs

(Table 1). In total, 35 036 genes (11 322 unique, Table S4)

were identified as significantly differentially expressed in

response to water stress in at least one contrast. Many

genes (9264) were differentially expressed in two or more

contrasts, while 2058 genes were identified in only a single

contrast (Figure 3a). Two of the ten contrasts (GSE19700

and GSE10643) did not identify any DEGs; the analyses

described below include only the eight contrasts for which

DEGs were identified.

The eight single-study contrasts were able to recapitu-

late 3926 of the DEGs identified by the meta-analysis (Fig-

ure 3b and Table 1). The DEGs with the largest effect sizes

according to the meta-analysis were well represented in

the lists of genes identified by single-study contrasts

(Table 2). The top 15 down-regulated genes (ranked by

magnitude of the effect size in the meta-analysis) were dis-

covered, on average, by six of the eight contrasts. The 15

genes most up-regulated by water stress treatments

according to the meta-analysis, were also identified, on

average, by six of the eight studies.

Meta-analysis identifies differentially expressed genes

with small effect sizes

As discussed above, meta-analyses have greater power to

discover genes with small but consistent responses that

may be missed in individual studies or found inconsis-

tently among different studies due to their small

responses. We found 89 genes that were identified only by

the meta-analysis and not discovered by the individual

contrasts (Figure 3b). This collection of genes was

enriched for genes with small effect sizes (l̂). Seventy-nine
of the 89 genes (89%) had extremely small log expression

ratios (l̂ < 0.05, either induced or repressed) (Table S5). In
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Figure 2. Differences in gene expression responses between shoots and

roots identified using meta-regression.

Weighted means of log expression ratios (l̂) for each gene are summarized

in roots (red) and shoots (green), which are horizontally adjacent to each

other. The value of l̂ for each gene is indicated by a dot, with a horizontal

line encompassing the 95% confidence interval (CI). The top half of the plot

includes 167 genes that are up-regulated in shoots and down-regulated in

roots, while the bottom half of the plot shows 76 genes that are down-regu-

lated in shoots and up-regulated in roots.

Figure 3. Comparison of genes identified via t tests in individual studies

and genes identified in the meta-analysis.

(a) Distribution of the number of studies (contrasts) that each differentially

expressed gene was identified in, according to individual t tests performed

in each study.

(b) Venn diagram showing the intersection between genes identified by a

t test in at least one study, and those identified by the meta-analysis.
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comparison, only 14% of genes (544/4015) identified in the

meta-analysis had log expression ratios that were as small

(<0.05). These 79 genes represent genes with small but

consistent responses that the individual contrasts failed to

identify, and their detection is potentially one of the advan-

tages of performing meta-analysis when summarizing

results across studies. For example, JAM3 (At4g16430) is

slightly but consistently and significantly up-regulated in

response to water deficit according to the meta-analysis

(l̂ = 0.03, FDR < 0.001; Table S5). While this gene is consis-

tently up-regulated in all but one of the individual con-

trasts, this up-regulation was not significant according to

the individual t tests (Figure 4a). The JAM3 transcription

factor, along with JAM1 and JAM2, is a negative regulator

of jasmonate responses. Previous work showed that JAM1

and JAM2 are induced by drought, but reported that JAM3

expression is not significantly changed under any tested

conditions (Sasaki-Sekimoto et al., 2013). Our study sug-

gests that this lack of significant change in any individual

study may simply be due to its low magnitude of change,

and the limited power available to detect low-magnitude

changes in any single study. These genes with small but

highly consistent responses may be important for under-

standing the transcriptional biology of stress responses.

However, we cannot say how important they are until care-

ful empirical studies are performed to evaluate their contri-

butions.

Meta-regression identifies water stress-responsive genes

moderated by plant part or treatment

Individual studies may have different results for a number

of reasons. It is important to identify differences between

responses in specific plant parts, and between different

experimental treatments, unambiguously and quantita-

tively. We used meta-regression to summarize the magni-

tude and significance of these covariates across studies.

We compared the 1360 genes identified as having plant

part-specific expression by the meta-regression with the

Table 2 Top five gene ontology differences between plant part-specific genes detected by meta-analysis and those detected by individual
t test contrasts, according to P value (see Table S6 for complete results)

Category Description Gene ontology term

Relative frequency

Corrected P valueMeta-analysis t tests

Biological process Photosynthesis GO:0015979 7.1 3.6 5.3 9 10�9

Photosynthesis, light reaction GO:0019684 6.1 3 2.4 9 10�9

Cellular component Photosystem GO:0009521 1.6 0.3 4.5 9 10�9

Chloroplast thylakoid membrane GO:0009535 5.3 2.4 4.7 9 10�9

Thylakoid part GO:0044436 6.2 3 5.7 9 10�9
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Figure 4. Examples of gene expression responses

to drought that were detected by the meta-analysis

and meta-regression, but not by the individual t test

contrasts.

(a) Expression response of JAM3 across ten individ-

ual experiments, with t test P values for each exper-

iment shown above each bar. l̂ and its confidence

interval from the meta-analysis (FDR < 0.001) are

indicated by dashed and dotted lines, respectively.

(b) Expression responses of EER5 across nine indi-

vidual experiments. Plot as in (a), except that the

results for experiments on shoots and roots are col-

ored green and brown, respectively, and lshoots and
lroots and their confidence intervals from the meta-

regression (QM = 15.3, FDR = 0.002) are indicated

by separate dashed/dotted lines for shoot and root

experiments.
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4173 genes identified as having plant part-specific expres-

sion by the t test contrasts (by comparing t test results, i.e.

significant versus non-significant in different contrasts). Of

the latter 4173 genes, only 13% (550) were also identified

as plant part-specific by the meta-regression. These 550

common genes represent only 40% of the 1360 genes iden-

tified as differing among plant parts according to the meta-

regression. We next used a statistical test to assess

whether there are biological differences between the

sets of genes identified as plant part-specific by meta-

regression versus by comparison among t test contrasts

(S�anchez et al., 2007; Salicr�u et al., 2011). In comparison to

the meta-regression, the t test approach missed genes

involved in 51 gene ontology terms, including tissue-speci-

fic processes such as photosynthesis and light harvesting,

with components of both photosystem I and II stabiliza-

tion, and with protein products localized to the thylakoid

(Table 2 and Table S6). In contrast to these 51 gene ontol-

ogy terms, only three terms occur at a higher frequency

among genes categorized as plant part-specific by compar-

ing t tests than among genes identified by the meta-

regression (RNA modification and processing, cytosol

localization), none of which are related to plant part-speci-

fic responses.

We performed a similar analysis comparing the 1052

genes differentially expressed in response to the experi-

mental method by the meta-regression versus the 4479

identified by comparing the individual t tests. Of the latter

4479 genes, only 6% (274) were also identified as method-

specific by the meta-regression. These 274 common genes

represent only 26% of the 1052 genes identified as moder-

ated by experimental method according to the meta-

regression. Again, we looked at gene ontology profiles to

evaluate these differences. In comparison with the meta-

regression, the t test approach shows a significantly lower

frequency of genes in abiotic stress-related gene ontology

terms, such as response to wounding, osmotic stress and

water deprivation (Table S7). These responses make bio-

logical sense because of the differences between the meth-

ods used in the analyzed experiments: mannitol treatment

results in osmotic stress and deracination results in a

wounding response. In contrast, the gene ontology terms

found at higher frequency among genes identified in the

t test comparison do not appear to be related to method-

specific functions.

At the extreme, we found genes identified by the meta-

regression that were not identified by even a single t test

contrast (33 genes for plant part and 56 genes for treat-

ment type; Tables S8 and S9). For example, EER5

(At2g19560), which encodes a transcription factor involved

in ethylene signaling, shows significant differential

responses in roots and shoots across studies in response

to water stress (Figure 4b; QM = 15.3, FDR = 0.002). The

gene is significantly up-regulated in shoots (P < 0.001) and

down-regulated in roots (non-significant). These responses

are consistent across all individual studies; however, this

effect was not significant in any individual study. Ethylene

has been shown to play a central role in coordinating

growth and survival in response to diverse challenges,

including drought (Yoo et al., 2009). Recent work in an Ara-

bidopsis eer5 mutant suggests that ethylene regulation is

complex, potentially including EER5-dependent transcrip-

tion of genes responsible for inhibiting or re-setting ethy-

lene responses (Christians et al., 2008). Previous

transcriptional profiling resulted in identification of a few

ethylene biosynthesis genes, suggesting a link between

ethylene and drought-stress signaling pathways in Ara-

bidopsis (Seki et al., 2002), but EER5 has not previously

been implicated. Here, the statistical power afforded by the

meta-regression resulted in the discovery of a tissue speci-

fic-action of this gene in the water stress response. While

the magnitude of this response is low, its consistent pat-

tern when all studies were considered together suggests

that it is biologically meaningful.

Meta-analysis excludes idiosyncratic responses associated

with individual studies and treatments

The single-study t tests were largely able to recapitulate

the water stress-responsive genes identified by the meta-

analysis (Figure 3b). Most of the genes that were identi-

fied by all eight individual studies (88%, 90/102) were

also identified by the meta-analysis. In contrast, few

(11%) of the water stress-responsive genes that were

identified by t test in only a single study were identified

as differentially expressed by the meta-analysis. The

DEGs identified by t test in the deracination study

(GSE6583) that were not identified by the meta-analysis

were enriched for the gene ontology term for responses

to wounding (GO:0009611; FDR < 0.001, Table S10). This

suggests that meta-analysis may exclude idiosyncratic

responses associated with particular treatments, such as

wounding, as opposed to the conserved water stress

response. The statistical (and biological) reason for this is

that these genes vary considerably in their responses

among studies due to treatment differences, as well as

unidentified batch effects. In addition, high variance

among biological replicates within studies may be caused

by inconsistencies among biological replicates or low

numbers of biological replicates. By excluding such

results with large confidence intervals meta-analysis is

able to exclude idiosyncratic responses.

DISCUSSION

The massive amount of publicly available transcriptome

data affords the opportunity to identify broad patterns in

transcriptome remodeling that are not discernible from the

small number of samples typically included in a single

study. A number of approaches have been proposed to
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synthesize the results of multiple studies. Meta-analysis

has been used in other fields to synthesize transcriptomic

data, and should also be more widely implemented for

plant differential response data. Shaik and Ramakrishna

(2013) and Zaag et al. (2015) synthesized DEG microarray

studies on biotic and abiotic stress responses in Arabidop-

sis, and identified genes that were differentially expressed

in response to each stress. Although these approaches

were each shown to be effective in various ways, for exam-

ple in assisting with functional annotations and visualizing

co-expression relationships, the disadvantages of these

approaches are that they do not weight studies based on

precision (i.e. variance), distinguish between sampling

variance within studies and between-study variance, or

estimate variance components due to covariates (stress

type, method, plant part).

We used inverse-variance weighted meta-analysis and

meta-regression to identify sources of heterogeneity in

study outcomes. Comparison of the meta-analysis and

meta-regression results with results from individual t test

contrasts was informative. We found that most of the

genes discovered by meta-analysis were congruent with

those identified by the moderated t test contrasts. A num-

ber of small but highly consistent differential responses

were identified only by the meta-analysis. Interestingly, in

some cases, individual studies may contain useful informa-

tion that was previously not apparent. For example, while

two of the ten studies that we included identified no signif-

icant DEGs when examined individually (possibly due to

low statistical power), they probably contain useful infor-

mation when statistically combined with other studies

using meta-analysis.

The results of the meta-regression also revealed some

results that were not apparent using moderated t test con-

trasts. Most strikingly, a significant fraction of genes

involved in photosynthesis that are differentially expressed

between roots and shoots were missed. In addition, speci-

fic genes involved in other functions, such as EER5, which

encodes a regulator of ethylene in shoots, were found to

be differentially expressed in the meta-regression, but

were not identified in even a single t test. These missed

genes highlight the limitations of vote-counting analyses

that compare published lists of DEGs, which tend to iden-

tify only a small number of the most consistent responses

across multiple studies, probably as a result of low statisti-

cal power. For example, a comparison of three microarray

studies of the response of Arabidopsis to water stress

identified only 27 common water stress-induced genes,

representing just over 3% of the 806 water stress-induced

genes identified by the individual studies (Bray, 2004). A

systematic investigation of microarray studies, undertaken

by the MicroArray Quality Control (MAQC) project, showed

that a combination of fold change ranking and careful

selection of P value cutoffs when identifying DEGs greatly

increased the reproducibility of microarray studies within

and between laboratories, and across platforms (Shi et al.,

2008). In the present study, we applied the MAQC

approach to obtain gene lists that are more comparable

between studies than would be achieved by comparing

results obtained from study-specific analysis parameters.

Even so, any vote-counting approach may still be subject

to idiosyncratic responses, such as those due to method-

ological differences among studies. Indeed, we found that

the number and identity of DEGs identified by t tests was

highly variable across studies (Table 1). Some of these dif-

ferences may be explained by the true biological variation

underlying the complex response of Arabidopsis to envi-

ronmental change. Differences in experimental methods

(e.g. the mode, duration and severity of treatment), the

developmental stage of the plants, or the time of day at

which the samples were collected (Wilkins et al., 2009,

2010) may influence the induced transcriptome remodel-

ing. Genes detected in the deracination experiment, but

not in the meta-analysis, were enriched in wounding-

related gene ontology terms, suggesting that meta-regres-

sion distinguished conserved water stress-responsive

genes but excluded those associated with a particular

treatment.

Adams et al. (2008) used meta-analysis to integrate

microarray studies on differential gene expression in

honey bee brains at different stages in the maturation of

the bees, and compared their results with the results of

conventional individual study analyses. Similar to our find-

ings, they reported that meta-analysis was able to identify

genes with consistent overall expression patterns, and also

rejected genes with inconsistent expression across studies.

They also found that comparing lists of genes identified in

individual studies failed to discover genes with consistent

expression across studies that were below the selected sig-

nificance threshold.

Meta-analysis reveals consistent responses among genes

involved in abscisic acid signaling

Many of the water stress-responsive genes identified in the

meta-analysis are canonical regulators of the water stress

response in A. thaliana, and include a number of genes in

the abscisic acid (ABA) signaling pathway. ABA is a well-

characterized plant hormone that regulates plant

responses to drought and water stress (Fujita et al., 2011).

It is produced in the roots of drought and water-stressed

plants and is transported to the leaves, where it regulates

stomatal aperture to prevent continued water loss

(Schachtman and Goodger, 2008). The minimal ABA

signaling pathway comprises members of the regulatory

component of ABA receptor (RCAR/PYR/PYL) family,

type 2C protein phosphatases (PP2C), and members of the

SNF1-related kinase 2 (SnRK2) family (Sheard and Zheng,

2009).
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Our meta-analysis identified changes in members of all

three of these signaling pathway families (Table S11).

Importantly, the meta-analysis permits us to quantitatively

summarize the relative effect size of each component of

this pathway across numerous studies. The HAI2/AIP1

gene (highly ABA-induced PP2C gene 2; At1g07430) had

the largest effect size (l̂ = 0.73) in the meta-analysis. It was

also one of the top 100 DEGs in seven of the eight single-

study t tests, but its position differed substantially between

studies. HAI2/AIP1 encodes a protein that acts as a nega-

tive regulator of osmoregulatory solute accumulation dur-

ing drought and water stress (Bhaskara et al., 2012) and as

a positive regulator of ABA signaling (Lim et al., 2012).

RCAR3 (At5g53160), a gene that encodes a binding partner

of HAI2/AIP1, was significantly down-regulated in response

to water stress in the meta-analysis (l̂ = �0.10). SnRK2–6
(At4g33950), a gene that encodes a calcium-independent

ABA-activated protein kinase with a role in ABA-mediated

regulation of stomatal aperture, was up-regulated in

response to water stress in the meta-analysis (l̂ = 0.15)

and in five of the single-study t tests.

CONCLUSIONS

Formal statistical methods for synthesizing the results of

gene expression responses from a number of studies are

increasingly being implemented in various research fields.

We found that, while the results of moderated t test syn-

theses agreed in large part with the results of our meta-

analysis, formal weighted meta-analysis was able to dis-

cover additional responses that were not identified by con-

ventional approaches. Meta-regression provided additional

information on responses that are attributable to use of

shoots versus roots and to the methodology used that

may be missed using other approaches for synthesis of

results. Identification of gene responses across studies,

and of the sources of heterogeneity in responses, may be

accurately addressed using meta-analysis and meta-regres-

sion, and the results may provide additional biologically

meaningful information. With some development, these

approaches may also be adapted for other types of tran-

scriptomic data, such as RNA-seq data.

EXPERIMENTAL PROCEDURES

Gene expression data

Data sets published in the National Center for Biotechnology
Information Gene Expression Omnibus (GEO) at 17 October 2012
were reviewed for inclusion in this study. The basic criteria for
inclusion were as follows: (i) studies used the ATH1 Genome
Array, platform GPL198 (699 studies), (ii) study titles included at
least one of the following terms: drought, water stress, water
potential, osmotic (33 studies), (iii) studies included paired trea-
ted and untreated samples, and (iv) samples were derived from
wild-type Col–0 plants to provide as consistent a data set as pos-
sible. These criteria resulted in a total of ten GEO series com-

prising 56 arrays (Table 1). For studies that included time series
data, a single daytime point was selected; the other time points
were excluded.

Pre-processing

The raw expression data files (CEL files) for the study samples
were downloaded from GEO. CEL files for each study were pre-
processed separately using GCRMA (Wu et al., 2004). Probe sets
that did not satisfy the following standard criteria were excluded
from downstream analyses: (i) expression levels had to have a
minimum log2 fluorescence intensity of 100 in at least 10% of
samples, and (ii) expression levels were required to have a mini-
mum interquartile log2 range of 0.5 across all arrays. A total of
11 985 probe sets, of the 24 445 probe sets on the array, met these
criteria and were included in the meta-analysis. By removing
genes with low levels of expression and with little variation, the
number of statistical tests required is greatly reduced. However, a
trade-off for this reduced number of multiple tests is the potential
for false negatives.

Analysis of the microarray data was performed using Biocon-
ductor suite 2.11 (Gentleman et al., 2004) in R 2.14.2 (R Develop-
ment Core Team, 2009; http://www.R-project.org) using the affy
1.36.1 package (Gautier et al., 2004).

All statistical tests (P values) were corrected for multiple compar-
isons using the Benjamini–Hochberg false discovery rate correction
(Benjamini and Hochberg, 1995) using a step-up procedure (Wright,
1992), as implemented in the p.adjust function of R. This approach
adjusts P values so that the FDR is at the desired level of a (here
0.05; i.e. the expected proportion of false discoveries is 5%).

Meta-analysis

A separate meta-analysis was performed on the data for each
included gene that met the criteria above, to synthesize differential
responses across the different studies. We followed standard
established meta-analysis methodology (Viechtbauer, 2010;
Borenstein et al., 2011; Mengersen and Schmid, 2013; Rosenberg
et al., 2013). We calculated effect sizes for each gene (probe set)
for each study as the log expression ratio (lnR; Hedges et al.,
1999) for differential expression:

In Ri ¼ ln
Y1

Y2

� �
¼ lnY1� lnY2 (1)

and its approximated variance:

vi ¼ s21

n1Y
2

1

þ s22

n2Y
2

2

(2)

for the ith study, where Y 1 is the mean response to the experi-
mental (water stress) treatment for a gene for the biological repli-
cates within an individual study and Y 2 is the mean response for
the control (non-stress) treatment, s21ands

2
2 are their respective

variances, and n1 and n2 are the respective sample sizes (number
of biological replicates).

To combine the studies, we used a random-effects model in
which studies are weighted by the sum of the true variation
among studies and sampling variation within studies:

wi ¼ 1

vi þ s2
(3)

where vi is defined above and s2 is the between-study variance.

The effect sizes were combined across studies to give a
weighted mean effect size across K studies:
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l̂ ¼
PK
i¼1

wi ĥi

PK
i¼1

wi

(4)

and the variance of l̂:

s2l̂ ¼ 1

PK
i¼1

wi

(5)

where ĥ is the effect size of each gene for each study, and wi is
the corresponding weight for that study, and the 95% confidence
interval around l̂ is:

CI ¼ l̂� sl̂ta
2½K�1� (6)

where t is Student’s t distribution with K-1 degrees of freedom at
an a level of 0.05. The confidence intervals and test statistics (z
value, and its associated P value) of the individual coefficients in
the model (i.e. whether the gene expression response is signifi-
cantly different from zero) are based on the normal distribution.
The P values across genes were FDR-adjusted, as described
above. The random-effects model was fitted using a restricted
maximum-likelihood estimator.

Calculations for Eqns (3–6) were performed using the R pack-
age metafor version 1.7 (Viechtbauer, 2010). As discussed in
Lajeunesse (2015), bias may be introduced into the variance
calculation when means are near zero because of our relatively
small sample sizes. However, while small sample size correc-
tions have been suggested (Hedges et al., 1999, 2010; Moreno
et al., 2012; Lajeunesse, 2015), they have not yet been adopted
in the literature or implemented in software, and so we applied
the widely used formulation here. More detailed explanations
and assumptions of the random-effects model are discussed
elsewhere (Hedges and Olkin, 1985; Borenstein et al., 2011;
Mengersen et al., 2013; Rosenberg et al., 2013; Gurevitch and
Nakagawa, 2015).

Meta-regression

Meta-regressions were performed separately to evaluate the con-
tribution of two covariates to expression responses for each gene:
plant part and water stress method. First, we assessed the effect
of plant part on expression. We identified plant part as roots or
shoots, where shoots are above-ground tissue, including rosettes
and leaves. We excluded the study GSE35258, which sampled
seedlings, from the analysis. For studies in which responses for
different plant parts were assessed, we included the outcomes
reported for different plant parts as if they were independent stud-
ies. While this is not a conservative approach, the data available
were insufficient to include a complete statistical model, and the
trade-off was preserving this valuable information at the cost of
violating the assumption of independence among outcomes. We
then included plant part as a covariate:

yi ¼ b0 þ b1Xi þ ri þ ei (7)

where b0 is the intercept (the mean true effect when the moder-
ator variable is equal to zero), b1 is the regression coefficient for
plant part, Xi1 is the categorical dummy value of the covariate
(roots or shoots) for the ith study, ri is the random-effects error
term (the residual heterogeneity), and ei is the independent sam-
pling error. In addition, the meta-regression was performed
without an intercept so that the model coefficients may be

interpreted as mean effect size estimates. To estimate the ran-
dom effects variance, we used the DerSimonian–Laird estimator
(DerSimonian and Laird 1986; Raudenbush, 2009). We are most
interested in the values of the coefficient b1 for roots and
shoots, as well as their confidence intervals and test statistics.
The test statistics of the individual coefficients in the model
(and the corresponding confidence intervals) are based on the
normal distribution.

In order to determine whether the plant part covariate was sig-
nificant for a particular gene, we performed a heterogeneity test
and calculated QM, the Q-statistic for the model, which tests
whether at least one of the regression coefficients is different from
zero (Viechtbauer, 2010; Borenstein et al., 2011), as well as its P
value, where Q is v2-distributed with m � 1 degrees of freedom
(m being the number of coefficients tested). We adjusted P using
an FDR correction, as described above. A more complete descrip-
tion of the meta-regression methods is available in the literature
(Thompson and Higgins, 2002; Hedges et al., 2010; Schwarzer
et al., 2015).

Second, we evaluated the effect on differential expression of
the method of imposing water stress. Methods used to impose
water stress were water withholding, deracination, and osmotic
stress (induced by mannitol). We excluded the study GSE35258, in
which polyethylene glycol was used to induce water stress, from
the analysis. The influence of the method on differential expres-
sion was treated as a covariate in a random-effects model, exactly
as described above for plant part (Eqn 7).

The meta-regressions on plant part and water stress method
were performed separately because of sampling limitations in the
current dataset (i.e. to include seedlings when assessing the effect
of method, but not when assessing roots versus shoots, and to
exclude polyethylene glycol as a method when assessing
method), although meta-regression models may also be used to
simultaneously evaluate multiple covariates.

t tests for individual contrasts

The limma 3.13.4 Bioconductor package was used to identify
DEGs in individual studies (i.e. individual contrasts) (Smyth, 2005).
In each case, water deficit-treated samples were contrasted with
their paired controls to identify significant DEGs. Each contrast
was conducted as a moderated t test, to identify DEGs between
the water-stressed and control samples in a single tissue in a
given study. A moderated t test may be interpreted just as an ordi-
nary t statistic, the only difference being that the standard errors
have been moderated across genes, which has been shown to
improve performance on microarray data (Smyth, 2004). No other
effects (e.g. study, tissue) were evaluated in this analysis. The
pairwise t tests used the same pre-processed data as used in the
meta-analysis.

Gene ontology enrichment analysis was performed by singular
enrichment analysis using agriGO (Du et al., 2010), with all
genes on the Affymetrix ATH1 Genome Array (GPL198) as back-
ground. Significance of enrichment was determined using a
hypergeometric test (FDR-corrected P value <0.05). Gene ontol-
ogy profile analysis was used to compare gene lists obtained
from meta-analysis to lists obtained from individual contrasts in
the R package goProfiles version 1.30 (Du et al., 2010; S�anchez
et al., 2013). The significance of profile differences in annotation
frequencies were tested for each gene ontology term between
levels 2 and 15 for molecular function, biological process and
cellular component, using Fisher’s exact test. We then applied
an FDR correction to the complete set of tests, following the
procedure described above.
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expression, identified either by meta-regression or by comparison
of t test results across experiments.

Table S8. Genes identified by the meta-regression as having
expression responses to water stress that are moderated by plant
part, but which were not identified by even a single t test.

Table S9. Genes identified by the meta-regression as having
expression responses to water stress that are moderated by the
type of experimental method, but which were not identified by
even a single t test.

Table S10. Results of gene ontology enrichment analysis for
genes with a significant gene expression effect only in a single
deracination study.

Table S11. Abscisic acid pathway-related genes identified by the
meta-analysis.
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